Simple and accurate fracture toughness testing methods for pyrolytic carbon/graphite composites used in heart-valve prostheses.

نویسندگان

  • J J Kruzic
  • S J Kuskowski
  • R O Ritchie
چکیده

The fracture toughness is a critical material property for the pyrolytic carbon materials used in mechanical heart-valve prostheses; however, making accurate toughness measurements has traditionally been problematic due to difficulties in fatigue precracking specimens. In this work, a simple, effective, and reliable precracking method is presented where a sharp precrack is "popped in" from a razor micronotch, which allows significant savings of time and materials relative to fatigue precracking methods. It is further shown that equivalent results may be obtained using razor micronotched specimens directly without precracking, provided the notch is sufficiently sharp. Indeed, mean toughness values of 1.46+/-0.13 and 1.35+/-0.09 MPa radicalm were obtained for the pyrolytic carbon-coated graphite materials, using precracked and razor micronotched specimens, respectively. The difference between these mean values proved to be statistically insignificant, and these values are in general agreement with published fracture toughness results obtained using fatigue precracked specimens.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Aging on Fracture Toughness of Al6061-Graphite Particulate Composites

This article presents the investigative work conducted on the fracture toughness and microstructure of Al6061-9% graphite particulate composites. The requisite specimens for the fracture toughness testing were compact tension ones prepared using stir casting technique. The Al6061-9% graphite particulate metal matrix composite has been heat treated in the underaged condition. It is observed from...

متن کامل

Differential Sputtering Behavior of Pyrolytic Graphite and Carbon-Carbon Composite Under Xenon Bombardment

A differential sputter yield measurement technique is described, which consists of a quartz crystal monitor that is swept at constant radial distance from a small target region where a high current density xenon ion beam is aimed. This apparatus has been used to characterize the sputtering behavior of various forms of carbon including polycrystalline graphite, pyrolytic graphite, and PVD-infilt...

متن کامل

Prediction of Mode II of Fracture Toughness in Laminate Composites

In this paper, effects of ply orientation of adjacent plies with (ϕ//θ) interfaces on mode II critical strain energy release rate (fracture toughness) of multidirectional (MD) laminate has been studied. Ply orientation of adjacent plies is one of the most important parameters affects the mode II critical strain energy release rate () in the initiation of the delamination. To  study this paramet...

متن کامل

Effect of Thickness on Fracture Toughness of Al6061-Graphite

This research work presents the study on fracture behavior of Al6061 with graphite particulate composite produced by the stir casting technique. The materials selected for the proposed work is Al6061 and graphite particles. Compact tension (CT) specimens were utilized to determine fracture toughness for different thickness of composite. In the present work, optimizing the parameters of the comp...

متن کامل

Standard Delamination Testing Procedures of Unidirectional Composites

In this chapter some of the standard procedures for delamination testing of unidirectional polymer composites will be examined. The main objective is to explore the possibilities of applying the standard testing methods to interlayer toughened composites and to establish parameters which may influence fracture toughness measurements. Existing standards for mode I and mode II delamination testin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research. Part A

دوره 74 3  شماره 

صفحات  -

تاریخ انتشار 2005